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Abstract
Advances in neuro-technology keep advancing at an astounding pace, and at times it seems like we are closer to science 
fiction than reality. Neurotech is evolving faster than ever, and staying on top of trends is a must for researchers [1]. On 
May 29, 2017, at the 70th session of the World Health Assembly in Geneva, the World Health Organization (WHO) has 
unanimously adopted a global plan on dementia—the Global Plan of Action on the Public Health Response to Dementia 
2017–2025—that includes targets for the advancement of dementia awareness, risk reduction, diagnosis, care and 
treatment, support for care partners, and research. 

Loss of noradrenaline (NA)-rich afferents from the Locus Coeruleus (LC) ascending to the hippocampal formation has been 
reported to dramatically affect distinct aspects of cognitive function, in addition to reducing the proliferation of neural 
progenitors in the dentate gyrus. Here, the hypothesis that reinstating hippocampal noradrenergic neurotransmission with 
transplanted LC-derived neuroblasts would concurrently normalize both cognitive performance and adult hippocampal 
neurogenesis was investigated [2]. Although β2-AR agonists may provide therapeutic value in combination with novel 
treatments for AD [3]. 

Advanced PET scan for recognition and pre diagnosis the conflict area such as hippocampus with neural biomarkers and 
Aβ are promoted and helpful. 

Keywords: positron emission tomography, PET scan, Alzheimer, AD, Noradrenaline, NA, Norepinephrine, NE, 
imaging, biomarker, β-adrenergic, hippocampus.

1. Introduction 
Biomarkers are vital for diagnostics of brain disease and 
therapeutic monitoring [4]. Multiple imaging modalities, 
such as MRI, PET, diffusion tensor imaging (DTI), and rs-fM-

RI, help in capturing diverse pathology patterns that may 
highlight different disease relevant regions in the brain [5]. 
A final pillar of evidence for disease or its progression is pro-
vided by biomarker monitoring [4]. 
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Figure1: The pairing of diagnostic neural biomarkers with therapeutic agents that share a specific target in Alzheimer cells 
or tissues.

Figure2: Integrative Disease Modeling

Imaging Biomarkers of Neuronal Injury and Neuro-
degeneration 
Newly developed radioactive isotopes and contrasting agents 
increase the efficiency of MRI, MRS, and PET scans. As tech-
nology advances, new diagnostic approaches will be made to 
further improve the capabilities of imaging biomarkers [6]. 
Given the involvement of the noradrenergic system in neu-
rodegenerative diseases, noradrenergic biomarkers could 
be an important complementary tool to established patho-
logical biomarkers and may provide new insights into the 
neuromodulatory underpinnings of cognitive and behavioral 
symptoms [7]. 

Positron Emission Tomography (PET) 
The most used radionuclide is fluoro-deoxy-glucose (FDG), 
which measures metabolic activity in the brain. PET is es-
pecially capable of measuring lesions that are not visible on 
MRI scans [8]. PET is capable of measuring neuroinflam-
mation and can distinguish components of the neuroim-
mune response [9]. The PET scan is painless and uses lesser 
amounts of radioactivity. The noradrenergic system can be 
assessed using CSF and PET measures will be beneficial for 
understanding how changes to this neuromodulatory system 
contribute to the clinical manifestations of Alzheimer’s dis-
ease and The opportunity to monitor the status of the nor-
adrenergic system using CSF and PET measures may also aid 
in the early detection of pathological decline and be useful 
for determining the efficacy of NA drugs in clinical trials [7]. 
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Figure 3: Connectivity of the hippocampus and Amygdala

Figure 4: The metabotropic glutamate receptor type 5 (mGluR5), purinergic P2X7 receptor, type 1 cannabinoid receptor 
(CB1), and phosphodiesterase 10A (PDE10A), 

The hippocampus is related to declarative memory, spatial memory, long-term explicit memory, memory consolidation, and 
contextual regulation of emotional responses [10]. The impact of PET imaging in psychiatric disorders was largely confined 
to radiotracers developed to advance to targets that often failed as therapeutics in clinical trials [11].

Advanced PET radiotracers are specifically targeted subpopulations of serotonin receptors to study serotonergic neuro-
transmission in psychoses and mood disorders [12]. 
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Figure 5: Examples of application of Braak staging in PET imaging studies. 

Figure 6: Typical regional cerebral 18F- FDG hypo metabolism patterns in AD, DLB, and frontal and temporal FTD (Nico-
laas I. Bohnen, January 2012)

(A) Cases representative of each PET-based Braak stage 
included in Rullman et al. (27). Left column includes para-
metric 18F-PI2620 PET images merged with standard MRI, 
whereas right column [13]. 

Alzheimer’s disease and β-Amyloid (Aβ) 
Among the multiple causes for dementia, Alzheimer’s dis-
ease (AD) holds the first place in terms of prevalence (60–
80%), leading a list that also includes cerebrovascular dis-
ease (5–10%), frontotemporal lobar degeneration (5–10%), 
Lewy body disease (5%), hippocampal sclerosis and Parkin-
son’s disease [14]. One of the most commonly used clinical 
diagnostic criteria for AD was established by the National 

Institute on Aging and Alzheimer’s Association for presenta-
tions that classify as probable AD, possible AD, or probable 
or possible AD with biomarker evidence [15, 16] . The role of 
microglia in Aβ deposition is complex. On one hand, physio-
logical mechanisms involving microglia and astrocytes con-
tribute to stop the growth of amyloid-β plaques and remove 
them. Microglia is able to migrate to the surroundings of Aβ 
plaques to prevent the recruitment of more Aβ peptide [17]. 
Β-Amyloid (Aβ) and tau proteins are the two main patholog-
ical hallmarks related to the development of AD, and both of 
them imply protein misfolding. Additional mechanisms, in-
cluding oxidative stress, neuroinflammation, mitochondrial 
dysfunction and 
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Imbalances in cholinergic and glutamatergic tone, are also 
present in the progression of the disease [18]. Dementia is 
accompanied by excessive Aβ plaque accumulation and an 
impaired neural synaptic network dynamic related to amyg-
dala activity and amygdala-hippocampus connectivity [19]. 
Some studies have reported that atrophy of the basolateral 
amygdala, hippocampus, and prefrontal cortex is found in 
patients with dementia plaque-preceding Aβ oligomer-de-
pendent neuronal hyperactivity is considered to contribute 
to the system dysfunction present at early stages of AD, sup-
porting the consideration of monomers and oligomers as the 
primary causing agents of the disease [20, 21, 22, and 23]. 
The pathogenesis of AD is related to the formation of senile 
plaques by Aβ.
 
Amyloid PET can detect cerebral Aβ deposition with preci-
sion, has good specificity for AD neuropathology, And is a 
reliable diagnostic imaging tool, and its use should be en-
couraged to guide early differential diagnosis in clinical set-
tings and, in the future, to select patients for disease-specific 
therapies [24]. 

As damaging of noradrenergic neurons in the locus coeru-
leus (LC) occurs at the prodromal stage of AD, activation of 
adrenergic receptors could serve as the first line of defense 
against the onset of the disease [25]. 

recently used serial amyloid PET and MRI in 1,246 cognitive-
ly normal individuals and found that worsening of memory 

and reduction of hippocampal volume over time preceded 
amyloid accumulation on amyloid PET in several older indi-
viduals, arguing that memory decline in several older indi-
viduals was due to the aging process itself, and not to the ac-
cumulation of Aβ deposits in the brain. This fits with recent 
findings of the ADNI investigators, who found many patients 
who experienced cognitive decline before changes occurred 
in CSF Aβ [26].
 
FDG- PET was used by multiple researchers to detect alter-
ations in brain metabolism due to TBI [27]. Flortaucipir and 
florbetapir are two FDA-approved specific PET tracers that 
bind tau and amyloid-beta respectively [28].
 
Amyloid-β (Aβ) 
Clinically, it is characterized by a progressive decline in mem-
ory, language, and other cognitive functions. These cognitive 
deficits are consequences of neuronal loss probably related 
to the accumulation of intracellular inclusions of aberrant 
forms of phosphorylated tau and extracellular deposits of 
amyloid-β (Aβ), known as neurofibrillary tangles (NFTs) 
and amyloid or senile plaques, respectively [29]. Amyloid-β 
(Aβ) is the predominant pathologic protein in Alzheimer’s 
disease (AD). The production and deposition of Aβ are im-
portant factors affecting AD progression and prognosis. The 
deposition of neurotoxic Aβ contributes to damage of the 
blood–brain barrier. BBB (blood-brain barrier) dysfunction 
and Aβ deposition may lead to a vicious cycle that causes AD 
development [30]. 

Figure 7: Vicious circle formed by BBB dysfunction and Aβ deposition 

Extensive evidence indicates that Aβ removal plays a more 
pivotal role in the process of Aβ accumulation in the brains 
of AD patients than does an increase in Aβ production [31]. 

Norepinephrine and Hippocampus 
Locus coeruleus (LC) provides the sole source of noradren-
ergic (NA) innervation to hippocampus, and it undergoes 
significant degeneration early in Alzheimer’s disease (AD). 
Norepinephrine (NE) modulates synaptic transmission and 
plasticity at hippocampal synapses which likely contributes 
to hippocampus-dependent learning and memory [32]. 

Β-AR agonists, such as isoproterenol (ISO), have been shown 
to facilitate or strengthen hippocampal-dependent memory 

[33]. Amyloid pathology has been recently linked to psycho-
sis in prodromal dementia [34]. Β2-AR agonists may provide 
therapeutic value in combination with novel treatments for 
AD [3].
 
What is particularly compelling about β-AR is that these 
receptors play a central role in this process, by driving the 
direction of change of synaptic strength and in grading the 
persistency of synaptic plasticity in the different hippocam-
pal subfields [35, 36, 37, and 38]. Loss of noradrenaline 
(NA)-rich afferents from the Locus Coeruleus (LC) ascending 
to the hippocampal formation has been reported to dramat-
ically affect distinct aspects of cognitive function, in addition 
to reducing the proliferation of neural progenitors in the 
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dentate gyrus. Here, the hypothesis that reinstating hippo-
campal noradrenergic neurotransmission with transplanted 
LC-derived neuroblasts would concurrently normalize both 
cognitive performance and adult hippocampal neurogenesis 
was investigated [2].
 
Relevant original research and review articles on radiotrac-
ers that confirmed NA or NE following recurrent AD were re-
trieved. The results gathered from the above data were sum-
marized based on the biomarkers assessed through imaging 
or measurements in hippocampal body fluid and blood. 
 
2. Methodology 
EMBASE (Scopus), PsycINFO, PROQUEST and MEDLINE 
(PubMed) databases were searched for studies eligible for 
inclusion. Studies with both neuropsychological and bio-
marker evidence by Novel PET Radiotracers with Potential 
Clinical Applications were included in the final narrative 
synthesis. 

The PUBMED database was searched using the following 
keywords: positron emission tomography, PET scan, Alzhei-
mer, AD, Noradrenaline, NA, Norepinephrine, NE, imaging, 
biomarker, β-adrenergic, and hippocampus. 
 
This review used the Preferred Reporting Items for System-
atic reviews checklist as a guideline for the dissemination of 
materials collected and was registered in PROSPERO (regis-
tration number CRD42020172733: 2020) [39, 40]. 
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