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Abstract
Herein, the structure and stability of double icosahedron Ag17M2 (M = Ni, Cu, Zn) clusters are investigated using density 
functional theory (DFT) computations. The results indicate that the clusters favor endohedral configurations in the doublet 
state, as confirmed with four different functionals: BP86, PBE0, B3PW91, and TPSSh. Additionally, the doped clusters exhibit 
higher ionization energies and electronegativities compared those of the bare Ag19 cluster. After doping, the ELF function 
increases at the Ag sites, which reveals important implications for catalysis.                .
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1. Introduction
Nanoclusters, particularly those composed of noble metals 
like silver, have drawn considerable attention due to their 
unique structural, electronic, and catalytic properties. The 
arrangement of atoms within these clusters often leads 
to behaviors that deviate from those of bulk materials, 
making them ideal candidates for a variety of technological 
applications. Among these, the double icosahedron structure, 
characterized by a distinct icosahedral geometry with 
enhanced stability, is a particularly interesting motif in the 
study of metallic clusters [1-3]. Moreover, clusters of coinage 
and noble metals have demonstrated enormous potential 
for electrocatalysis. While noble-metal clusters demonstrate 
remarkably high catalytic activity in facilitating the four-
electron reduction of oxygen molecules, transition metals 
suffer from corrosion issues under acidic conditions [4]. 
Silver and its alloys exhibit notable stability and high activity 
for the oxygen reduction reaction (ORR) under alkaline 
conditions, making them attractive, low-cost alternatives to 
noble-metal catalysts [5]. Previous DFT studies have shown 
that core-shell Ag nanoclusters, especially those with noble-
metal cores, are promising catalysts for ORR [6, 7]. The 
development of noble-metal-free catalysts, such as Ag- based 
nanoclusters and alloys, is crucial for expanding the range of 
catalysts suitable for alkaline fuel cell applications. Moreover, 
small coinage metal clusters showed promising properties 
for the hydrogen evolution reaction [8]. In this work, we 
anticipate the stability and reactivity of double icosahedral 
Ag17M2 clusters, where M represents the transition metals Ni, 
Cu, and Zn. The results show that the incorporation of two 
M atoms into the silver framework introduces significant 
modifications to their stability and reactivity. The structural 

stability, bonding interactions, and energetic preferences of 
these systems are investigated by means of density functional 
theory (DFT). The findings of this study provide crucial 
insights into the effect of metal substitution on the stability 
and chemical reactivity of Ag17M2 clusters, highlighting their 
potential for catalysis and other applications that require 
enhanced nanomaterial reactivity.

1.1. Computational Details
Calculations performed in this work are carried out by using 
density functional theory (DFT) as implemented in the ORCA 
6.0.0 code [9]. The exchange and correlation energies are 
addressed by the PBE0 functional in conjunction with the 
Def2-ECP and auxiliary def2/J basis sets, where ECP stands 
for effective core potential [10-13]. Atomic positions are 
self-consistently relaxed through a Quasi-Newton method 
employing the BFGS algorithm. The SCF convergence criterion 
is set to Tight SCF in the input file. This results in geometry 
optimization settings of 1.0e−08 Eh for total energy change 
and 2.5e−11 Eh for the one-electron integrals. The Van der 
Waals interactions are included in the exchange-correlation 
functionals with empirical dispersion corrections of Grimme 
DFT-D3(BJ). The electron localization function (ELF) was 
computed and analyzed using Multiwfn [14]. Theoretical 
descriptors such as hardness (η), electronegativity (χ), 
and electrophilicity index (ω), can be derived from the 
Koopman’s theorem and are used to evaluate the chemical 
stability of Ag17M2 clusters, which can be obtained by using 
the following equations:
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where I and A are the vertical ionization energy and vertical 
electron affinity parameters, which are calculated following 

previous works [15-18].

2. Results
The Ag17M2 (M = Ni, Cu, Zn) clusters investigated in this work 
are calculated by using a double icosahedron structure model, 
as shown in Figure 1. The results show that the clusters favor 
the endohedral doping over the exohedral configurations, 
which is also observed for smaller icosahedral clusters. 
Interestingly for Ag17Zn2 cluster the endohedral configuration 
is also more favorable than exohedral configurations (Figures 
1b, 1c), although the exohedral configuration in the 13-atom 
icosahedral cluster (Ag12Zn) is more stable [19]. Moreover, 
the low-spin state (doublet) is favored over the quartet state 
for these clusters, as confirmed by four different functionals 
(see Table I).
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structure model, as shown in Figure 1. The results show that the clusters favor the endohedral doping over the exohedral 
configurations, which is also observed for smaller icosahedral clusters.[19] Interestingly for Ag17Zn2 cluster the 
endohedral configuration is also more favorable than exohedral configurations (Figures 1b, 1c), although the exohedral 
configuration in the 13-atom icosahedral cluster (Ag12Zn) is more stable.[19] Moreover, the low-spin state (doublet) is
favored over the quartet state for these clusters, as confirmed by four different functionals (see Table I).

FIG. 1. Double icosahedral structure model for representing Ag17M2 clusters. Three different chemical orderings (a, b, c) are used 
to represent the endohedral and exohedral configurations.

TABLE I. Relative energies (in eV) of the lowest energy structures of Ag17M2(Ni, Cu, Zn) clusters computed at different DFT 
levels. Representative values on the spin multiplicity (SM) are given.

Label SM BP86 PBE0 B3PW91 TPSS
h

Ag17Ni2 2 0.00 0.00 0.00 0.00
Ag17Cu2 2 0.00 0.00 0.00 0.00
Ag17Zn2 2 0.00 0.00 0.00 0.00

Ag17Ni2 4 0.30 0.25 0.07 0.28
Ag17Cu2 4 0.52 0.43 0.45 0.47
Ag17Zn2 4 0.86 0.80 0.83 0.75

To identify the fingerprints of the clusters, we have calculated their infrared (IR) spectra, which will serve as a 
reference for future experimental studies.[20, 21] All the clusters show a similar IR spectrum with two main peaks, with 
the intensity depending on the composition, for example, Ag17Zn2 and Ag19 show the first peak as more pronounced 
than the second one (Figure 2). The characteristic peak for Ag17M2 (M = Ni, Cu, Zn) is found at 190.56,
88.81, and 151.31 cm−1, while their vibrational frequency ranges are 46.90–210.92, 39.17–234.72, and 37.12–217.94 
cm−1, indicating a narrow range for their vibrational spectra. For comparison, we have evaluated the bare Ag19 cluster,
which shows the main vibrational mode at 75.82 cm−1, within a range of 22.11–225.92 cm−1.
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To identify the fingerprints of the clusters, we have calculated 
their infrared (IR) spectra, which will serve as a reference for 
future experimental studies [20, 21]. All the clusters show a 
similar IR spectrum with two main peaks, with the intensity 
depending on the composition, for example, Ag17Zn2 and Ag19 
show the first peak as more pronounced than the second one 
(Figure 2). The characteristic peak for Ag17M2 (M = Ni, Cu, 

Zn) is found at 190.56, 88.81, and 151.31 cm−1, while their 
vibrational frequency ranges are 46.90–210.92, 39.17–
234.72, and 37.12–217.94 cm−1, indicating a narrow range for 
their vibrational spectra. For comparison, we have evaluated 
the bare Ag19 cluster, which shows the main vibrational mode 
at 75.82 cm−1, within a range of 22.11–225.92 cm−1.
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FIG. 2. IR spectra for Ag17M2(M = Ni, Cu, Zn) clusters obtained at the PBE0/Def2-ECP level. The bare Ag19 clusters is 
shown for comparison.

To investigate the stability and reactivity of double icosahedron Ag17M2 (M = Ni, Cu, Zn) clusters, we summarized
the calculated parameters in Table I. The results show that doping the Ag19 cluster increases the ionization energy, 
while the electron affinity does not show a specific trend upon doping. The derived parameters such as the chemical 
hardness (η) and electronegativity (χ) show increased values for the doped clusters compared to the bare Ag19 cluster, 
suggesting that the doped clusters are more prone to accepting electrons. These findings provide valuable insights into the 
tunability of Ag-based nanoclusters for potential applications in catalysis and electronic materials.
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icosahedron Ag17M2 (M = Ni, Cu, Zn) clusters, we summarized 
the calculated parameters in Table I. The results show that 
doping the Ag19 cluster increases the ionization energy, 
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upon doping. The derived parameters such as the chemical 

hardness (η) and electronegativity (χ) show increased 
values for the doped clusters compared to the bare Ag19 
cluster, suggesting that the doped clusters are more prone to 
accepting electrons. These findings provide valuable insights 
into the tunability of Ag-based nanoclusters for potential 
applications in catalysis and electronic materials.
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FIG. 3. The electron localization function (ELF = 0.7) for a) the Ag17Ni2cluster and b) the Ag19cluster.

TABLE II. The ionization energy (I), electron affinity (A), chemical hardness (η), electronegativity (χ) and electrophilicity 
index (ω) of Ag17M2(M = Ni, Cu, Zn) and Ag19clusters. The results are calculated with the PB86 functional in conjunction 
with the Def2-ECP basis set. The energy is given in eV.

Cluster I A η χ ω
Ag17Ni2 5.67 2.40 1.63 4.04 5.00
Ag17Cu2 5.45 2.48 1.48 3.96 5.29
Ag17Zn2 5.76 2.55 1.60 4.15 5.39

Ag19 5.36 2.45 1.45 3.91 5.26

To gain insight into the reactivity of the clusters, we evaluated the ELF distribution, which indicates where elec-
trons are localized and helps identify active sites that are either electron-rich (nucleophilic) or electron-deficient 
(electrophilic). These sites may correspond to bonding interactions between atoms or molecules with the cluster. In a 
metal nanoparticle catalyst, it is well established that atoms at edges and corners exhibit higher reactivity due to their 
lower coordination numbers.[22, 23] This increased reactivity is associated with enhanced electron localization, which 
facilitates interactions with reactants. We expect high ELF values to indicate regions where electrons are highly 
localized and likely to interact with reactants. As shown in Figure 3, the doped clusters, for example, Ag17Ni2, exhibit 
more localized sites on the Ag surfaces but greater depletion at the central sites, which can be contrasted with the bare 
Ag19 cluster. These preliminary results provide a foundation for further exploration of cluster reactivity, with potential 
applications in catalysis.[24–29]

IV. CONCLUSIONS

In this work, the structural and electronic properties of Ag17M2 (M = Ni, Cu, Zn) clusters are investigated 
using density functional theory (DFT) calculations. The DFT analysis of the clusters confirms their preference for 
endohedral configurations in the doublet state across multiple functionals. Doping enhances the ionization energy and 
electronegativity of the clusters compared to the bare Ag19 counterpart, indicating increased stability. Furthermore, the 
observed increase in ELF values at Ag sites suggests enhanced electron localization, which may have significant 
implications for catalysis.
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lower coordination numbers.[22, 23] This increased reactivity is associated with enhanced electron localization, which 
facilitates interactions with reactants. We expect high ELF values to indicate regions where electrons are highly 
localized and likely to interact with reactants. As shown in Figure 3, the doped clusters, for example, Ag17Ni2, exhibit 
more localized sites on the Ag surfaces but greater depletion at the central sites, which can be contrasted with the bare 
Ag19 cluster. These preliminary results provide a foundation for further exploration of cluster reactivity, with potential 
applications in catalysis.[24–29]

IV. CONCLUSIONS

In this work, the structural and electronic properties of Ag17M2 (M = Ni, Cu, Zn) clusters are investigated 
using density functional theory (DFT) calculations. The DFT analysis of the clusters confirms their preference for 
endohedral configurations in the doublet state across multiple functionals. Doping enhances the ionization energy and 
electronegativity of the clusters compared to the bare Ag19 counterpart, indicating increased stability. Furthermore, the 
observed increase in ELF values at Ag sites suggests enhanced electron localization, which may have significant 
implications for catalysis.
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To gain insight into the reactivity of the clusters, we 
evaluated the ELF distribution, which indicates where elec-
trons are localized and helps identify active sites that are 
either electron-rich (nucleophilic) or electron-deficient 
(electrophilic). These sites may correspond to bonding 
interactions between atoms or molecules with the cluster. 
In a metal nanoparticle catalyst, it is well established that 
atoms at edges and corners exhibit higher reactivity due to 

their lower coordination numbers [22, 23]. This increased 
reactivity is associated with enhanced electron localization, 
which facilitates interactions with reactants. We expect high 
ELF values to indicate regions where electrons are highly 
localized and likely to interact with reactants. As shown in 
Figure 3, the doped clusters, for example, Ag17Ni2, exhibit 
more localized sites on the Ag surfaces but greater depletion 
at the central sites, which can be contrasted with the bare 



Volume - 3 Issue - 1

Page 4 of 5

Copyright © P. L. Rodríguez-KesslerJournal of Theoretical Physics & Mathematics Research

Citation: Rodríguez-Kessler, P. L. (2025). Stability and Reactivity of Double Icosahedron Ag17M2 (M=Ni, Cu, Zn) Clusters. J Theor 
Phys Math, 3 (1), 1-5.

Ag19 cluster. These preliminary results provide a foundation 
for further exploration of cluster reactivity, with potential 
applications in catalysis [24–29].

3. Conclusions
In this work, the structural and electronic properties of 
Ag17M2 (M = Ni, Cu, Zn) clusters are investigated using 
density functional theory (DFT) calculations. The DFT 
analysis of the clusters confirms their preference for 
endohedral configurations in the doublet state across 
multiple functionals. Doping enhances the ionization energy 
and electronegativity of the clusters compared to the bare 
Ag19 counterpart, indicating increased stability. Furthermore, 
the observed increase in ELF values at Ag sites suggests 
enhanced electron localization, which may have significant 
implications for catalysis.
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